Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Chest ; 162(5): 1145-1146, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2287370

Subject(s)
Respiration , Water , Humans , Air
4.
J Med Virol ; 93(9): 5339-5349, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363673

ABSTRACT

The present study was conducted from July 1, 2020 to September 25, 2020 in a dedicated coronavirus disease 2019 (COVID-19) hospital in Delhi, India to provide evidence for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in atmospheric air and surfaces of the hospital wards. Swabs from hospital surfaces (patient's bed, ward floor, and nursing stations area) and suspended particulate matter in ambient air were collected by a portable air sampler from the medicine ward, intensive care unit, and emergency ward admitting COVID-19 patients. By performing reverse-transcriptase polymerase chain reaction (RT-PCR) for E-gene and RdRp gene, SARS-CoV-2 virus was detected from hospital surfaces and particulate matters from the ambient air of various wards collected at 1 and 3-m distance from active COVID-19 patients. The presence of the virus in the air beyond a 1-m distance from the patients and surfaces of the hospital indicates that the SARS-CoV-2 virus has the potential to be transmitted by airborne and surface routes from COVID-19 patients to health-care workers working in COVID-19 dedicated hospital. This warrants that precautions against airborne and surface transmission of COVID-19 in the community should be taken when markets, industries, educational institutions, and so on, reopen for normal activities.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/epidemiology , COVID-19/transmission , Fomites/virology , RNA, Viral/genetics , SARS-CoV-2/genetics , Air/analysis , COVID-19/prevention & control , Coronavirus Envelope Proteins/genetics , Coronavirus RNA-Dependent RNA Polymerase/genetics , Hospitals , Humans , India/epidemiology , Intensive Care Units , Particulate Matter/analysis
5.
Int J Environ Res Public Health ; 17(24)2020 12 18.
Article in English | MEDLINE | ID: covidwho-1362357

ABSTRACT

BACKGROUND: Aerobic dance (AD) is an appropriate physical activity for improving cardiorespiratory fitness. This study aimed to compare cardiorespiratory and metabolic responses, and muscle fatigue between an air dissipation platform (ADP) and a hard surface during a video-recorded AD session. METHODS: 25 healthy young women (23.3 ± 2.5 years) completed three sessions. In session 1, participants performed an incremental test to exhaustion on a treadmill. One week after session 1, participants were randomly assigned in a crossover design to perform video-recorded AD sessions on an ADP and on a hard surface (sessions 2 and 3). Cardiorespiratory and metabolic responses were assessed during AD sessions. Muscular fatigue was measured before and after AD sessions by a countermovement jump test. RESULTS: Significantly higher heart rate, respiratory exchange ratio, pulmonary ventilation, ventilatory oxygen equivalent, and ventilatory carbon dioxide equivalent were observed on an ADP than on a hard surface (p < 0.05). Despite a significant increase in lactate levels on an ADP (p ≤ 0.01), muscular fatigue and perceived exertion rating were similar on both surfaces (p > 0.05). CONCLUSIONS: Video-recorded AD on an ADP increased the cardioventilatory and metabolic responses compared to a hard surface, preventing further muscle fatigue.


Subject(s)
Air , Dancing , Exercise , Exercise Test , Female , Heart Rate , Humans , Oxygen Consumption , Video Recording
6.
Int J Mol Sci ; 22(15)2021 Jul 24.
Article in English | MEDLINE | ID: covidwho-1325682

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as with the influenza virus, has been shown to spread more rapidly during winter. Severe coronavirus disease 2019 (COVID-19), which can follow SARS-CoV-2 infection, disproportionately affects older persons and males as well as people living in temperate zone countries with a tropical ancestry. Recent evidence on the importance of adequately warming and humidifying (conditioning) inhaled air in the nasal cavity for reducing SARS-CoV-2 infectivity in the upper respiratory tract (URT) is discussed, with particular reference to: (i) the relevance of air-borne SARS-CoV-2 transmission, (ii) the nasal epithelium as the initial site of SARS-CoV-2 infection, (iii) the roles of type 1 and 3 interferons for preventing viral infection of URT epithelial cells, (iv) weaker innate immune responses to respiratory viral infections in URT epithelial cells at suboptimal temperature and humidity, and (v) early innate immune responses in the URT for limiting and eliminating SARS-CoV-2 infections. The available data are consistent with optimal nasal air conditioning reducing SARS-CoV-2 infectivity of the URT and, as a consequence, severe COVID-19. Further studies on SARS-CoV-2 infection rates and viral loads in the nasal cavity and nasopharynx in relation to inhaled air temperature, humidity, age, gender, and genetic background are needed in this context. Face masks used for reducing air-borne virus transmission can also promote better nasal air conditioning in cold weather. Masks can, thereby, minimise SARS-CoV-2 infectivity and are particularly relevant for protecting more vulnerable persons from severe COVID-19.


Subject(s)
Air , COVID-19/immunology , COVID-19/virology , Nasopharynx/immunology , Nasopharynx/virology , SARS-CoV-2/pathogenicity , Age Factors , COVID-19/genetics , Humans , Humidity , Inhalation , Sex Factors , Temperature
7.
Risk Anal ; 41(5): 745-760, 2021 05.
Article in English | MEDLINE | ID: covidwho-1301543

ABSTRACT

In the U.S., spray irrigation is the most common method used in agriculture and supplementing with animal wastewater has the potential to reduce water demands. However, this could expose individuals to respiratory pathogens such as Legionella pneumophila and nontuberculosis Mycobacteria (NTM). Disinfection with methods like anaerobic digestion is an option but can increase concentrations of cytotoxic ammonia (personal communication). Our study aimed to model the annual risks of infection from these bacterial pathogens and the air concentrations of ammonia and determine if anaerobically digesting this wastewater is a safe option. Air dispersion modeling, conducted in AERMOD, generated air concentrations of water during the irrigation season (May-September) for the years 2013-2018. These values fed into the quantitative microbial risk assessments for the bacteria and allowed calculation of ammonia air concentrations. The outputs of these models were compared to the safety thresholds of 10-4 infections/year and 0.5 mg/m3 , respectively, to determine their potential for negative health outcomes. It was determined that infection from NTM was not a concern for individuals near active spray irrigators, but that infection with L. pneumophila could be a concern, with a maximum predicted annual risk of infection of 3.5 × 10-3 infections/year and 25.2% of parameter combinations exceeding the established threshold. Ammonia posed a minor risk, with 1.5% of parameter combinations surpassing the risk threshold of 0.5 mg/m3 . These findings suggest that animal wastewater should be anaerobically digested prior to use in irrigation to remove harmful pathogens.


Subject(s)
Risk Assessment/methods , Waste Disposal, Fluid/methods , Wastewater , Water Purification/methods , Aerosols , Agricultural Irrigation/methods , Agriculture/methods , Air , Air Movements , Ammonia/chemistry , Animals , Legionella pneumophila , Legionnaires' Disease/microbiology , Manure , Microfluidics , Mycobacterium/metabolism , Probability , Risk , Swine , Water
8.
Molecules ; 26(12)2021 Jun 08.
Article in English | MEDLINE | ID: covidwho-1264497

ABSTRACT

This paper presents a method of implementation and the results of aerosol dispersion tests in underground mine workings. Numerous tests were carried out to determine the potential risk of SARS-CoV-2 coronavirus infection in the underground environment of the mines. The influence of selected parameters of mine air on the possibility and method of aerosol transmission through ventilation routes was experimentally determined in real conditions. The concentration of additional aerosols in the class of ultrafine and fine aerosols increased with the distance from the generator, while the concentration of coarse particles decreased. Assuming the consumption of the solution with which aerosols were generated, even at a small level of 1 cm3/min., the number of additional aerosols was several hundred particles in one cubic centimeter of air at a distance of 50-70 m from the generator. The concentration of ultrafine particles in the range of 40-20,000 nm increased from 122 particles/cm3 to 209 particles/cm3 at air temperature of 12 °C and relative humidity of 95-96%, and from 90 particles/cm3 to 243 particles/cm3 at air temperature of 17 °C and relative humidity of 76-82%, with the increasing distance from the generator (10 m to 50 m).


Subject(s)
Aerosols/analysis , COVID-19/transmission , Coal Mining , Workplace/standards , Air/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Equipment Design , Humans , Occupational Exposure/analysis , Particle Size , Particulate Matter/analysis , Poland , SARS-CoV-2
9.
J Med Virol ; 93(9): 5358-5366, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1206839

ABSTRACT

Currently available data are consistent with increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at temperatures encountered in the upper airways (25-33°C when breathing room temperature air, 25°C) compared to those in the lower airways (37°C). One factor that may contribute to more rapid viral growth in the upper airways is the exponential increase in SARS-CoV-2 stability that occurs with reductions in temperature, as measured in vitro. Because SARS-CoV-2 frequently initiates infection in the upper airways before spreading through the body, increased upper airway viral growth early in the disease course may result in more rapid progression of disease and potentially contribute to more severe outcomes. Similarly, higher SARS-CoV-2 viral titer in the upper airways likely supports more efficient transmission. Conversely, the possible significance of air temperature to upper airway viral growth suggests that prolonged delivery of heated air might represent a preventative measure and prophylactic treatment for coronavirus disease 2019.


Subject(s)
COVID-19/transmission , Nasopharynx/virology , SARS-CoV-2/physiology , Temperature , Trachea/virology , Virus Replication/physiology , Air/analysis , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Humans , Humidity , Post-Exposure Prophylaxis/methods , SARS-CoV-2/pathogenicity , Severity of Illness Index , Thermodynamics
11.
Sci Adv ; 7(10)2021 03.
Article in English | MEDLINE | ID: covidwho-1119273

ABSTRACT

The COVID-19 (coronavirus disease 2019) pandemic has resulted in a marked slowdown in greenhouse gas and aerosol emissions. Although the resulting emission reductions will continue to evolve, this will presumably be temporary. Here, we provide estimates of the potential effect of such short-term emission reductions on global and regional temperature and precipitation by analyzing the response of an Earth System Model to a range of idealized near-term emission pathways not considered in available model intercomparison projects. These estimates reveal the modest impact that temporary emission reductions associated with the COVID-19 pandemic will have on global and regional climate. Our simulations suggest that the impact of carbon dioxide and aerosol emission reductions is actually a temporary enhancement in warming rate. However, our results demonstrate that even large emission reductions applied for a short duration have only a small and likely undetectable impact.


Subject(s)
Climate , Greenhouse Effect/prevention & control , Air , Carbon Dioxide/analysis , Internationality , Rain , Temperature , Time Factors
12.
Anal Chem ; 93(9): 4270-4276, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1104412

ABSTRACT

Airborne pathogens have been considered as highly infectious and transmittable between humans. With the pandemic outbreak of the coronavirus disease 2019 (COVID-19), an on-site diagnostic system-integrated airborne pathogen-monitoring machine is recommended by experts for preventing and controlling the early stage ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread. In this work, a small-volume rotating microfluidic fluorescence chip-integrated aerosol SARS-CoV-2 sampling system was constructed to satisfy the demand for rapid on-site sample collection and detection of SARS-CoV-2. The rotating microfluidic fluorescence system with small volume has very high sensitivity in the detection of SARS-CoV-2 (detection limit of 10 copies/µL with the shortest Ct value of 15 min), which is comparable to reverse transcription polymerase chain reaction (RT-PCR). The precision variation coefficients within/between batches are very low [coefficient of variation (CV) % ≤ 5.0%]. Our work has passed the comprehensive inspection of the microfluidic chip performance by the Shanghai Medical Device Testing Institute [National Medical Inspection (Design) no. 4408] and successfully tested 115 clinical samples. The integrated system exhibits 100% specificity, high sensitivity (10 copies/µL), and good precision (CV % ≤ 5.0%) in the rapid detection of SARS-CoV-2, thus realizing rapid monitoring and diagnostics of SARS-CoV-2 nucleic acid on-site.


Subject(s)
COVID-19 Testing/instrumentation , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Lab-On-A-Chip Devices , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Aerosols/analysis , Air , Fluorescence , Humans , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
13.
J Bronchology Interv Pulmonol ; 28(1): 73-75, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-1064181

Subject(s)
Aerosols , Air , Humans , Particle Size
14.
Front Public Health ; 8: 604870, 2020.
Article in English | MEDLINE | ID: covidwho-1063368

ABSTRACT

Objective: To clarify the correlation between temperature and the COVID-19 pandemic in Hubei. Methods: We collected daily newly confirmed COVID-19 cases and daily temperature for six cities in Hubei Province, assessed their correlations, and established regression models. Results: For temperatures ranging from -3.9 to 16.5°C, daily newly confirmed cases were positively correlated with the maximum temperature ~0-4 days prior or the minimum temperature ~11-14 days prior to the diagnosis in almost all selected cities. An increase in the maximum temperature 4 days prior by 1°C was associated with an increase in the daily newly confirmed cases (~129) in Wuhan. The influence of temperature on the daily newly confirmed cases in Wuhan was much more significant than in other cities. Conclusion: Government departments in areas where temperatures range between -3.9 and 16.5°C and rise gradually must take more active measures to address the COVID-19 pandemic.


Subject(s)
Air , COVID-19 , Climate , Temperature , COVID-19/epidemiology , COVID-19/transmission , China , Cities , Humans
15.
Laryngoscope ; 130(11): 2637-2642, 2020 11.
Article in English | MEDLINE | ID: covidwho-1001947

ABSTRACT

OBJECTIVES/HYPOTHESIS: The aims of this work were 1) to investigate whether office laryngoscopy is an aerosol-generating procedure with an optical particle sizer (OPS) during clinical simulation on healthy volunteers, and 2) to critically discuss methods for assessment of aerosolizing potentials in invasive interventions. STUDY DESIGN: Prospective quantification of aerosol and droplet generation during clinical simulation of rigid and flexible laryngoscopy. METHODS: Two healthy volunteers were recruited to undergo both flexible and rigid laryngoscopy. An OPS was used to quantify aerosols and droplets generated for four positive controls relative to ambient particles (speech, breathing, /e/ phonation, and /ae/ phonation) and for five test interventions relative to breathing and phonation (flexible laryngoscopy, flexible laryngoscopy with humming, flexible laryngoscopy with /e/ phonation, rigid laryngoscopy, and rigid laryngoscopy with /ae/ phonation). Particle counts in mean diameter size range from 0.3 to >10 µm were measured with OPS placed at 12 cm from the subject's nose/mouth. RESULTS: None of the laryngoscopy interventions (n = 10 each) generated aerosols above that produced by breathing or phonation. Breathing (n = 40, 1-3 µm, P = .016) and /ae/ phonation (n = 10, 1-3 µm, P = .022; 3-5 µm. P = .083; >5 µm, P = .012) were statistically significant producers of aerosols and droplets. Neither speech nor /e/ phonation (n = 10 each) were associated with statistically significant aerosols and droplet generation. CONCLUSIONS: Using OPS to detect droplets and aerosols, we found that office laryngoscopy is likely not an aerosol-generating procedure. Despite its prior use in otolaryngological literature, an OPS has intrinsic limitations. Our study should be complemented with more sophisticated methods of droplet distribution measurement. LEVEL OF EVIDENCE: 3 Laryngoscope, 130:2637-2642, 2020.


Subject(s)
Aerosols/analysis , Air/analysis , Ambulatory Surgical Procedures/adverse effects , Laryngoscopy/adverse effects , Adult , COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Female , Healthy Volunteers , Humans , Male , Particle Size , Patient Simulation , Phonation , Prospective Studies , Respiration , SARS-CoV-2 , Speech
17.
Intervirology ; 63(1-6): 17-32, 2020.
Article in English | MEDLINE | ID: covidwho-942224

ABSTRACT

BACKGROUND: Transmission of many viruses occurs by direct transmission during a close contact between two hosts, or by an indirect transmission through the environment. Several and often interconnected factors, both abiotic and biotic, determine the persistence of these viruses released in the environment, which can last from a few seconds to several years. Moreover, viruses in the environment are able to travel short to very long distances, especially in the air or in water. SUMMARY: Although well described now, the role of these environments as intermediaries or as reservoirs in virus transmission has been extensively studied and debated in the last century. The majority of these discoveries, such as the pioneer work on bacteria transmission, the progressive discoveries of viruses, as well as the persistence of the influenza virus in the air varying along with droplet sizes, or the role of water in the transmission of poliovirus, have contributed to the improvement of public health. Recent outbreaks of human coronavirus, influenza virus, and Ebola virus have also demonstrated the contemporaneity of these research studies and the need to study virus persistence in the environment. Key Messages: In this review, we discuss historical discoveries that contributed to describe biotic and abiotic factors determining viral persistence in the environment.


Subject(s)
Disease Reservoirs/virology , Environmental Microbiology , Public Health/history , Virus Diseases/transmission , Viruses/isolation & purification , Air , Animals , Disease Outbreaks/prevention & control , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Medieval , Humans , Public Health/statistics & numerical data , Virus Physiological Phenomena , Water
18.
Med Hypotheses ; 145: 110353, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-894130

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed more than one million people as of October 1, 2020. Consequently, a search is on for a treatment that can bring the pandemic to an end. However, treatments (vaccine, antiviral, plasma) that are directed at specific viral proteins (RNA polymerase, spike proteins) may not work well against all strains of the virus. Therefore, it is hypothesized that a therapy based on multiple treatments is needed for COVID-19 patients and to bring the pandemic to an end. Here, it is proposed that a combination of cool air therapy (CAT) and purified air technology (PAT) in an oxygen species cool air respirator (OSCAR) could be used to reduce viral (SARS-CoV-2) load and severity of illness in COVID-19 patients through the individual dose-response relationship. In addition, the proposed therapy (CAT + PAT in OSCAR), which works by a more general physical and chemical mechanism, should work well with other treatments (vaccine, antiviral, plasma) that target specific viral proteins (RNA polymerase, spike proteins) to provide a safe and effective multiple therapy approach for ending the COVID-19 pandemic caused by SARS-CoV-2.


Subject(s)
Air , COVID-19/therapy , Combined Modality Therapy/methods , Oxygen/therapeutic use , Antiviral Agents/therapeutic use , Cold Temperature , Humans , Models, Theoretical , Pandemics , Treatment Outcome
19.
Med Pr ; 72(1): 39-48, 2021 Feb 03.
Article in English | MEDLINE | ID: covidwho-874967

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) generated a huge pressure on health care systems worldwide and exposed their lack of preparation for a major health crisis. In the times of a respiratory disease pandemic, members of the dental profession, due to having a direct contact with the patients' oral cavity, body fluids and airborne pathogens, are exposed to a great occupational hazard of becoming infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The authors carried out a systematic literature search using the main online databases (PubMed, Google Scholar, MEDLINE, UpToDate, Embase, and Web of Science) with the following keywords: "COVID-19," "2019-nCoV," "coronavirus," "SARS-CoV-2," "dental COVID-19," "dentistry COVID-19," "occupational hazards dentistry," "ventilation," "air disinfection," "airborne transmission," "hydrogen peroxide disinfection," "UV disinfection," "ozone disinfection," "plasma disinfection," and "TiO2 disinfection." They included publications focused on COVID-19 features, occupational hazards for dental staff during COVID-19 pandemic, and methods of air disinfection. They found that due to the work environment conditions, if appropriate measures of infection control are not being implemented, dental offices and dental staff can become a dangerous source of COVID-19 transmission. That is why the work safety protocols in dentistry have to be revised and additional methods of decontamination implemented. The authors specifically advise on the utilization of wildly accepted methods like ultraviolet germicidal irradiation with additional disinfection systems, which have not been introduced in dentistry yet, like vaporized hydrogen peroxide, non-thermal plasma and air filters with photocatalytic disinfection properties. Due to its toxicity, ozone is not the first-choice method for air decontamination of enclosed clinical settings. Med Pr. 2021;72(1):39-48.


Subject(s)
Air , COVID-19/prevention & control , Dental Offices , Disinfection/methods , Infection Control/methods , COVID-19/epidemiology , COVID-19/transmission , Humans , Pandemics
20.
J Korean Med Sci ; 35(37): e332, 2020 Sep 21.
Article in English | MEDLINE | ID: covidwho-789267

ABSTRACT

BACKGROUND: The purpose of this study was to determine the extent of air and surface contamination of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in four health care facilities with hospitalized coronavirus disease 2019 (COVID-19) patients. METHODS: We investigated air and environmental contamination in the rooms of eight COVID-19 patients in four hospitals. Some patients were in negative-pressure rooms, and others were not. None had undergone aerosol-generating procedures. On days 0, 3, 5, and 7 of hospitalization, the surfaces in the rooms and anterooms were swabbed, and air samples were collected 2 m from the patient and from the anterooms. RESULTS: All 52 air samples were negative for SARS-CoV-2 RNA. Widespread surface contamination of SARS-CoV-2 RNA was observed. In total, 89 of 320 (27%) environmental surface samples were positive for SARS-CoV-2 RNA. Surface contamination of SARS-CoV-2 RNA was common in rooms without surface disinfection and in rooms sprayed with disinfectant twice a day. However, SARS-CoV-2 RNA was not detected in a room cleaned with disinfectant wipes on a regular basis. CONCLUSION: Our data suggest that remote (> 2 m) airborne transmission of SARS-CoV-2 from hospitalized COVID-19 patients is uncommon when aerosol-generating procedures have not been performed. Surface contamination was widespread, except in a room routinely cleaned with disinfectant wipes.


Subject(s)
Air Microbiology , Coronavirus Infections/transmission , Environmental Exposure , Equipment Contamination , Pneumonia, Viral/transmission , Adult , Aerosols , Aged , Aged, 80 and over , Air , Betacoronavirus , COVID-19 , China , Disinfection , Female , Hospitals , Humans , Male , Middle Aged , Pandemics , Patients' Rooms , SARS-CoV-2 , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL